Erosion control information? Soil erosion is a complex process that depends on soil properties, ground slope, vegetation, and rainfall amount and intensity. According to Montgomery, modifications in land use are one of the most impactful ways of accelerating soil erosion. These changes then have a cascade effect as the loss of fertile topsoil cover sends millions of tons of sediments into lakes and reservoirs, changing ecosystems and impacting agricultural production and water quality. This has been the case with the Bo River in Vietnam. Despite these types of soil erosion, as we have briefly mentioned above, if it wasn’t for human activities, today’s soils would be less susceptible to erosion and more resilient. What are the human causes behind soil erosion then?
Rainwater also mixes with chemicals as it falls from the sky, forming an acidic concoction that dissolves rock. For example, acid rain dissolves limestone to form karst, a type of terrain filled with fissures, underground streams, and caves like the cenotes of Mexico’s Yucatan Peninsula. Back up on the mountains, snow and ice build up into glaciers that weigh on the rocks beneath and slowly push them downhill under the force of gravity. Together with advancing ice, the rocks carve out a path as the glacier slumps down the mountain. When the glacier begins to melt, it deposits its cargo of soil and rock, transporting the rocky debris toward the sea.
Sea wave erosion is accomplished primarily by hydraulic pressure, the impact of waves striking the shore, and by the abrasion (wearing, grinding, or rubbing away by friction) by sand and pebbles agitated incessantly by the water (see wave-cut platform). Wave impact and hydraulic action are usually most devastating to human-made coastal features such as breakwaters or moles. The impact and hydraulic action of storm waves are the most significant upon shores composed of highly jointed or bedded rock, which are vulnerable to quarrying, the hydraulic plucking of blocks of rock. See more information at what is erosion wiki.
Water-related forest ecosystem services include the provision, filtration and regulation of water, along with stream ecosystem support and water-related hazards control, e.g., soil protection from erosion and runoff (Bredemeier 2011). In this context, forest management practices that involve vegetation cover modifications may have a substantial impact on the provision of water-related ecosystem services (Ellison et al. 2012; Panagos et al. 2015b). Moreover, forest ecosystems interactions with water and energy cycles have been highlighted as the foundations for carbon storage, water resources distribution and terrestrial temperature balancing. Forest management may thus play a key role to meet climate change mitigation goals (Ellison et al. 2017).
Soil Conservation is the name given to a handful of techniques aimed at preserving the soil. Soil loss and loss of soil fertility can be traced back to a number of causes including over-use, erosion, salinization, and chemical contamination. Unsustainable subsistence farming and the slash and burn clearing methods used in some less developed regions can often cause deforestation, loss of soil nutrients, erosion on a massive scale, and sometimes even complete desertification.